Abstract

Soybean peroxidase (SBP)-catalyzed removal of phenol from wastewater has been demonstrated as a feasible wastewater treatment strategy and a non-ionic surfactant, Triton X-100, has the potential for increasing the enzyme economy of the process. Systematic studies on the enzyme–surfactant system have been lacking as well as demonstration of its applicability to industrial wastewater. This paper addresses those two gaps, the latter based on real wastewater from alkyd resin manufacture. The minimum effective Triton X-100 concentrations for crude SBP-catalyzed phenol conversion (≥95%) over 1–10mM showed a linear trend. To illustrate translation of such lab results to real-world samples, this data were used to optimize crude SBP needed for phenol conversion over that concentration range. Triton X-100 increases enzyme economy by 10- to 13-fold. This treatment protocol was directly applied to tote-scale (700–1000L) treatment of alkyd resin wastewater, with phenol ranging from 7 to 28mM and total organic carbon content of >40g/L, using a crude SBP extract derived from dry soybean hulls by simple aqueous elution. This extract can be used to remove phenol from a complex industrial wastewater and the process is markedly more efficient in the presence of Triton X-100. The water is thus rendered amenable to conventional biological treatment whilst the hulls could still be used in feed, thus adding further value to the crop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.