Abstract
ABSTRACTArc welding typically generates residual tensile stresses in welded joints, leading to deteriorated fatigue performance of these joints. Volume expansion of the weld metal at high temperatures followed by contraction during cooling induces a local tensile residual stress state. A new type of welding wire capable of inducing a local compressive residual stress state by means of controlled martensitic transformation at relatively low temperatures has been studied, and the effects of the transformation temperature and residual stresses on fatigue strength are discussed.In this study, several LTTW (Low Transformation‐Temperature Welding) wires have been developed and investigated to better characterize the effect of phase transformation on residual stress management in welded joints. Non‐load‐carrying cruciform fillet welded joints were prepared for measurement of residual stresses and fatigue testing. The measurement of the residual stresses of the three designed wires reveals a compressive residual stress near the weld toe. The fatigue properties of the new wires are enhanced compared to a commercially available wire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.