Abstract

To compare cruciate ligament forces during wall squat and one-leg squat exercises. Eighteen subjects performed the wall squat with feet closer to the wall (wall squat short), the wall squat with feet farther from the wall (wall squat long), and the one-leg squat. EMG, force, and kinematic variables were input into a biomechanical model using optimization. A three-factor repeated-measure ANOVA (P < 0.05) with planned comparisons was used. Mean posterior cruciate ligament (PCL) forces were significantly greater in 1) wall squat long compared with wall squat short (0 degrees -80 degrees knee angles) and one-leg squat (0 degrees -90 degrees knee angles); 2) wall squat short compared with one-leg squat between 0 degrees -20 degrees and 90 degrees knee angles; 3) wall squat long compared with wall squat short (70 degrees -0 degrees knee angles) and one-leg squat (90 degrees -60 degrees and 20 degrees -0 degrees knee angles); and 4) wall squat short compared with one-leg squat between 90 degrees -70 degrees and 0 degrees knee angles. Peak PCL force magnitudes occurred between 80 degrees and 90 degrees knee angles and were 723 +/- 127 N for wall squat long, 786 +/- 197 N for wall squat short, and 414 +/- 133 N for one-leg squat. Anterior cruciate ligament (ACL) forces during one-leg squat occurred between 0 degrees and 40 degrees knee angles, with a peak magnitude of 59 +/- 52 N at 30 degrees knee angle. Quadriceps force ranged approximately between 30 and 720 N, whereas hamstring force ranged approximately between 15 and 190 N. Throughout the 0 degrees -90 degrees knee angles, the wall squat long generally exhibited significantly greater PCL forces compared with the wall squat short and one-leg squat. PCL forces were similar between the wall squat short and the one-leg squat. ACL forces were generated only in the one-leg squat. All exercises appear to load the ACL and the PCL within a safe range in healthy individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.