Abstract

HypothesisFlotation of water-soluble KCl and NaCl minerals in brines is significant for K-fertilizer production, but its mechanism is controversial. Dissolved salt ions are expected to change the physicochemical properties of solvents, interfaces, and collector colloids, thereby affecting flotation significantly. ExperimentsFlotation experiments of KCl and NaCl crystals in brines were conducted using potassium and sodium laurates as collectors. Contact angle (CA) and surface tension measurements, X-ray photoelectron spectroscopy (XPS) analysis, and molecular dynamics simulations (MD) were applied to gain a molecular understanding of changing interfacial properties and crystal-collector colloid interactions in the presence of dissolved ions in terms of salt flotation. FindingsWhile K+ ions activate the NaCl crystal flotation, Na+ ions depress the KCl crystal flotation, in agreement with the studies of CA, XPS, and MD results with these crystals. XPS results showed no collector adsorption at crystal surfaces which is a requirement of conventional flotation and presents a new theoretical challenge. We argue the crucial role of ion specificity: Na-laurate colloids adsorb at the bubble surface as a monolayer but solvent-separated from KCl crystals, inhibiting their flotation, or in interactive contact with NaCl crystals, enhancing their flotation. Increasing K+ concentration weakens NaCl crystal hydration, increasing Na-laurate colloid attraction with crystals for better flotation. The Contact Interactive Collector Colloid (CICC) and Solvent-separated Interactive Collector Colloid (SICC) hydration states are critical to salt crystal flotation via collector colloid-crystal attraction by dispersion forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.