Abstract
The planar charge transfer is a distinctive characteristic of the two-dimensional (2D) polar materials. When such 2D polar materials are involved in vertical heterostructures (VHs), in addition to the van der Waals (vdW) interlayer interaction, the interfacial interaction triggered by the in-plane charge transfer will play a crucial role. To deeply understand such mechanism, we conducted a comprehensive theoretical study focusing on the structural stability and electronic properties of 2D polar VHs built by commensurate SiGe/GeC bilayers with four species ordering patterns (classified as a C-group with patterns I and II and a Ge-group with patterns III and IV, respectively). It was found that the commensurate SiGe/GeC VHs are mainly stabilized by interfacial interactions (including the electrostatic interlayer bonding, the vdW force, as well as the sp 2/sp 3 orbital hybridization), with the Ge-group being the most energetically favorable than the C-group. A net charge redistribution occurs between adjacent layers, which is significant (∼0.23–0.25 e cell−1) in patterns II and IV, but slightly small (∼0.05–0.09 e cell−1) in patterns I and III, respectively, forming spontaneous p–n heterojunctions. Such interlayer charge transfer could also lead to a polarization in the interfacial region, with the electron depletion (accumulation) close to the GeC layer and the electron accumulation (depletion) close to the SiGe layer in the C-group (the Ge-group). This type of interface dipoles could induce a built-in electric field and help to promote photogenerated electrons (holes) migration. Furthermore, a semi-metal nature with a tiny direct band gap at the SiGe layer and a semiconducting nature at the GeC layer indicate that the commensurate SiG/GeC VHs possess a type-I band alignment of heterojunction and have a wide spectrum of light absorption capabilities, indicating its promising applications for enhancing light-matter interaction and interfacial engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.