Abstract

Processes of defect formation in radiation hard semiconductors exhibiting efficient dynamic annealing are different from those in amorphizible ones, and the latter are generally more well-studied. In the present work, we investigate structural disorder in wurtzite ZnO, which is a radiation hard material, implanted with different ions at room temperature and 15 K. The sample analysis was undertaken by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The fluence dependence of bulk disorder exhibits the so-called IV-stage evolution, where the high fluence regime is characterized by both a strong influence on the damage build-up by the ion type and a reverse temperature effect. A straightforward methodology is demonstrated to differentiate between the contributions of pure ballistic and ion-defect reaction processes in the damage formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call