Abstract

Insects that can walk on smooth surfaces have specialized structures, footpads, on their legs. Footpads play an important role in adhesion to the substrate surface. Although the morphology and function of footpads have been studied, the mechanism of their formation is still elusive. In the ladybird beetle (Harmonia axyridis), hairy footpads are present on the first and second tarsal segments of the legs. The footpads are covered with hundreds of hairs, i.e. setae, whose tips consist of four types: pointed, lanceolate, spatular, and discoidal. We examined the formation of the footpad during the pupal stage using immuno-staining and fluorescent-conjugated phalloidin staining. We found that a seta was composed of a shaft and a socket and some setae were accompanied by a neuron. By the mid-pupal stages, the shaft cells elongated to form a setal structure. Cytoskeletal actin bundles ramified to create a framework for the setal tip structure of the cells. We examined the effects of the application of cytochalasin D, which inhibits actin polymerization, on the formation of footpad setal structures. The results showed that the setal tips were deformed by the inhibition of actin polymerization. Our observations reveal that cytoskeletal actin filaments are involved in shaping the setae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.