Abstract

Linear α-olefins (LAOs) are conventionally purified from paraffins via energy-intensive superfractionation. Adsorptive separation with zeolite-based adsorbents is a promising alternative to distillation for olefin/paraffin purification. However, very few zeolites with different Si/Al ratios and metal ion types have been tested to separate LAOs in the liquid phase. In this study, we investigated the ability of various alkali metal ion-exchanged faujasites with different Si/Al ratios to separate 1-octene/n-octane mixtures. We prepared low-silica X (LSX), X, and Y zeolites loaded with Li+, Na+, K+, and Rb+ via ion exchange in an aqueous solution. The 1-octene adsorption capacities and selectivities were analyzed via liquid-phase batch adsorption experiments. Among LSX, X, and Y exchanged with the Na+ and Li+, LSX which had the lowest Si/Al ratios exhibited the highest selectivity. The 1-octene selectivities for LSX were in the following order: Rb+ ≈ K+ < Na+ < Li+. LiLSX demonstrated the greatest separation efficiency among the zeolites owing to the presence of the largest number of cation sites and the highest charge density of Li+. The affinity constants calculated from the Langmuir-type adsorption isotherms and enthalpies of adsorption suggest that cation–π interactions between the C = C bond in olefins and metal ions influence selective adsorption. Density functional theory calculations support this theory of intermolecular interactions. Furthermore, a series of adsorption and desorption breakthrough experiments using a column packed with LiLSX validated its applicability for separating 1-octene and n-octane. We believe these adsorbents can be modified further and widely applied in the purification of higher olefins from chemical and biochemical products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call