Abstract
o-Carboranyl compounds contain specific geometries, ranging from planar to orthogonally distorted biphenyl rings. Herein, 13 o-carboranyl compounds, 1HF–13PP, were synthesized and fully characterized to determine the impact of structural formation of the aromatic group appended with the o-carborane to estimate the efficiency of their radiative decay process. All the compounds exhibited significant intramolecular charge transfer (ICT)-based emission in the crystalline state at 298 K. Remarkably, increasing the distorted dihedral angles between biphenyl rings gradually decreased the emission efficiencies. Furthermore, their radiative decay constants decreased linearly with increasing dihedral angles, which demonstrated the inversely proportional relationship between these two factors. These findings distinctly suggest that the planar or distorted geometry of substituted aryl groups can strongly affect the efficiency of the ICT-based radiative process in o-carboranyl luminophores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.