Abstract
This study evaluated the effect of different cements on resistance to dislodgment of crowns cemented on preparations lacking geometric resistance form. A preparation that offered no geometric resistance form, with 20 degrees total occlusal convergence (TOC), 0.9 mm wide shoulder finish line, and a 2.5 mm axial wall height was created on an ivorine tooth using a milling machine. Ten metal test specimen die replicas and 10 standardized metal crowns with recipient sites for the application of external forces through a universal testing machine were fabricated. The crowns were cemented on the dies under 5 and 10 kg external loads, the marginal openings measured, loaded to dislodgment, and cleaned of cement. The process was repeated using zinc oxide and eugenol (ZOE), zinc phosphate (ZPh), resin modified glass ionomer (RMGI), and composite resin (CR) cements. Marginal openings under 5 kg cementation loads were 74.63 (+/-15.04) for ZOE, 75.98 (+/-18.20) microm for ZPh, 98.58 (+/-22.62) microm for RMGI, and 105.82 (+/-20.07) microm for CR cements respectively; under 10 kg cementation loads they were 57.62 (+/-15.86) microm, 59.55 (+/-15.41) microm, 95.00 (+/-19.52) microm, 101.30 (+/-12.52) microm respectively. Oblique dislodgment forces, measured with a Universal testing machine, were 40.18 (+/- 6.76) N for ZOE, 215.65 (+/-45.79) N for ZPh, 165.43 (+/-19.53) N for RMGI, and 181.54 (+/-30.75) N for CR respectively when crowns were cemented under 5 kg loads. The corresponding values for 10 kg loads were 38.62 (+/-4.19), 274.86 (+/-54.22), 139.70 (+/-21.71), and 160.40 (+/-21.21) respectively. Only zinc phosphate cement produced statistically enhanced resistance when crowns were cemented under 10 kg force (p value = 0.035). Under the conditions of the present study only crowns cemented with zinc phosphate displayed increased resistance to dislodgment on preparations lacking resistance form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.