Abstract

Tree growth and form are both influenced by crown architecture and how it effects leaf distribution and light interception. This study examined the vertical distribution of foliage in 4-year-old plantation-grown Eucalyptus pilularis Sm. and E. cloeziana F. Muell. trees. Leaf area (LA) distribution was determined at two different sites using allometric approaches to determine LA in crown sections and for whole trees. Leaf area was distributed more towards the upper crowns when canopies had been closed for longer. Leaf area was also skewed more towards the upper crowns for Eucalyptus pilularis than E. cloeziana. These species differences were consistent with differences in vertical light availability gradients as determined by point quantum sensors. Leaf area of individual branches was highly correlated with branch cross-sectional area (CSA) and whole-tree LA was closely related to stem CSA. Branch-level allometric relationships were influenced by site and crown position. However, the general allometric equations between stem size and whole-tree leaf area could be applied across sites. Results from this study suggest that pruning of live branches in these species should follow species-specific guides for the timing and height of pruning to optimise the effects on stem growth and form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.