Abstract
Tyrosine (Ty) is an important amino acid that converts to levodopa (L-DOPA) which is used for treatment of Parkinson's disease (PD). Also, there is a correlation between UA levels and the risk of progression of PD as significantly low level of serum uric acid (UA) is a biomarker for Parkinson. Thus, it is important to detect L-DOPA and UA in presence of interfering compounds for monitoring PD disease. An electrochemical sensor is fabricated by the modification of glassy carbon electrode with successive layers of carbon nanotubes (CNT), poly(hydroquinone) (PHQ) and benzo-12-crown-4 (CE) for the simultaneous determination of L-DOPA, UA and Ty in biological fluids. CE is introduced for the first time as a receptor for L-DOPA, UA, Ty and ascorbic acid (AA). Stable host-guest complexes are formed between CE and these biologically compounds. L-DOPA, UA, Ty and AA are determined in the concentration ranges of 0.005–20 μM, 0.005–25 μM, 0.03–170 μM and 0.1–50 μM with detection limit values of 0.221 nM, 0.769 nM, 1.31 nM and 3.32 nM, respectively. Furthermore, the sensor possessed excellent anti-interference capability for simultaneous determination of L-DOPA, UA, Ty and AA or folic acid (FA). Recovery tests of the studied compounds were attained with excellent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.