Abstract
It is challenging to realize high efficiency and stability in perovskite photovoltaics simultaneously. Here, we show supramolecular chemistry using macrocyclic crown ether to prepare high-performance metal-halide perovskite films. Multiple cooperative supramolecular interactions between perovskites and crown ether are built, and superior defect passivation is achieved. A thin crystalline capping layer on top of perovskites is constructed to synergistically passivate the perovskite surface defects and protect the underlying films from environmental damage. The capping layer is confirmed to be a unique two-dimensional (2D) crystal with a highly ordered, high-crystallinity lamellae structure and face-sharing lead-halide octahedral organization, providing surface protection on the perovskite matrix. Lead-halide perovskite solar cells (PSCs) with supramolecular passivation and a 2D crystal interlayer demonstrated remarkable photovoltaic efficiency and stability improvements, offering a 21.5% efficiency and improved environmental stabilities under moisture, ultraviolet (UV) irradiation, and thermal stress. Our work provides a strategy to achieve efficient and stable lead-halide perovskite-based devices by crown ether-induced supramolecular passivation and 2D crystal interlayer protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.