Abstract
AbstractResponsive materials capable of autonomously regulating and adapting to molecular recognition‐induced chemical events hold great promise in the design of artificial chemo‐intelligent life‐like soft material platforms. In this context, the design of a synthetically minimal artificial emulsion platform that, regulated by interfacial supramolecular recognition events, is capable to autonomously and reversibly adapt to its chemical environment is reported. The systems exhibit programmed up‐ and down‐regulating capabilities that are realized via selective assembly of synthesized crown ether surfactants onto one hemisphere of anisotropic biphasic emulsion droplets. Dynamic and reversible interfacial host–guest complexation of, for example, metal and ammonium ions or amino acids transduce into interface‐triggered morphological reconfigurations of the complex emulsion droplets, which mediate their ability to selectively present, hide, or expand liquid–liquid interfaces. The separate responsive modalities are then used to showcase the utility of such adaptive soft material platforms for a self‐regulated uptake and release of metal ions or phase‐transfer catalysts, a biomimetic recognition of biomolecules including amino acids, carbohydrates, and antibodies, and for triggered surface‐encoded payload release applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.