Abstract

The structures of new butadienyl dyes of the benzothiazole series containing the dithia-15-crown-5 (2a) or dithia-18-crown-6 (2b) fragments were established by X-ray diffraction. Complexation of dyes 2a,b with Hg2+, Pb2+, Cd2+, Ag+, Zn2+, and alkaline-earth cations in aqueous-acetonitrile solutions was studied by spectrophotometry. At a high percentage of water in solutions (Pw ≈ 50%), these dyes have a very low ability to bind Pb2+ cations (logK < 2) and virtually do not bind Cd2+, Zn2+, and alkaline-earth cations. At the same time, these dyes form stable 1: 1 complexes with Hg2+ and Ag+ cations at all Pw. The stability constants of complexes with the Ag+ cation increase with increasing Pw because the free energy of hydration of this cation is much lower than the free energy of solvation in acetonitrile. In the Pw range from 0 to 75%, the stability constants of the complexes of dyes 2a,b with the Hg2+ cation are larger than those of the corresponding complexes with the Ag+ cation by more than four orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.