Abstract

The increased reliance on algorithmic decision-making in socially impactful processes has intensified the calls for algorithms that are unbiased and procedurally fair. Identifying fair predictors is an essential step in the construction of equitable algorithms, but the lack of ground-truth in fair predictor selection makes this a challenging task. In our study, we recruit 90 crowdworkers to judge the inclusion of various predictors for recidivism. We divide participants across three conditions with varying group composition. Our results show that participants were able to make informed decisions on predictor selection. We find that agreement with the majority vote is higher when participants are part of a more diverse group. The presented workflow, which provides a scalable and practical approach to reach a diverse audience, allows researchers to capture participants' perceptions of fairness in private while simultaneously allowing for structured participant discussion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.