Abstract

'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their own layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, "noise", misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world.

Highlights

  • ’Wikification of GIS by the masses’ is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild’s term ‘Volunteered Geographic Information’

  • State-of-the-art review ’Wikification of GIS (Geographic Information Systems) by the masses’ is a phrase-term first coined by Kamel Boulos in 2005 [1], two years earlier than Goodchild’s term ‘Volunteered Geographic Information (VGI)’ [2]

  • Geolocation-aware mobile crowdsourcing apps, such as Love Clean Streets [6], HealthMap’s Outbreaks Near Me [7] and MedWatcher [8], and the San Ramon Valley (CA, USA) Fire Department app (a realtime, geo-aware lifesaving app that alerts ‘citizen responders’ trained in CPR (CardioPulmonary Resuscitation) as soon as a cardiac arrest has been reported to emergency services) [9], are leveraging the power of the Social Web (’Web 2.0’) and smartphones to provide unprecedented levels of citizen engagement and participation in their local and wider communities

Read more

Summary

Discussion and conclusions

Increasing numbers of gadgets and appliances, including medical and hospital diagnostic devices, are Internet-connected or embedding M2M SIM cards/ GSM (Global System for Mobile Communications/ Groupe Spécial Mobile) modules to allow reporting data to backend systems for diagnostic, telemetry and control purposes, and to gain useful insights about the populations using such devices. For cross-border health surveillance, where neighbouring towns/cities and countries affect each other’s health but might be very ‘distant’ in terms of the bureaucratic processes required to share information in a timely manner (even when all essential data sharing agreements are in place [138]), tools are needed that respect each jurisdiction’s need for controlling access to its crowdsourced (expert) reports and data, while providing mechanisms for sharing adequate situational awareness of health events in sentinel border sites Some of this functionality is available in Veegilo [139], a simple open source tool that aggregates disease indicator numbers from national databases into a common space where incidence and reported deaths of monitored diseases can be seen and compared across sentinel sites and over time. We covered the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, “noise”, misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world (Common Scents/the Copenhagen Wheel, Linked Sensor Middleware, 3D Town, and Precision Information Environments)

Kamel Boulos MN
11. Saenz A
43. Weiser M
55. Sheth A
Findings
67. Janowicz K
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.