Abstract
As an emerging type of video comments, time-sync comments (TSCs) enable viewers to make comments on video shots in a real-time manner. Such comments well reflect user interests in the frame level, which can be utilized to further improve the accuracy of video recommendation. In this paper, we make the first attempt in this direction and propose a new video recommendation algorithm called SACF by exploiting temporal relationship between time-sync comments and video frames. Our algorithm can extract a rich set of semantic features from crowdsourced time-sync comments, and combine latent semantic representations of users and videos by neural collaborative filtering. We conduct extensive experiments using real TSC datasets, and our results show that our proposed algorithm can improve the recommendation performance by 9.73% in HR@10 and 5.72% in NDCG@10 compared with other baseline solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.