Abstract
This work presents an approach for collecting road surface data using connected vehicles. Road surface readings from multiple production vehicles were collected and aggregated to estimate road roughness measured by the International Roughness Index (IRI). The analysis compared multiple instances of connected vehicle data with high speed pavement profile vehicle (Class 1 profiler) data. A separate analysis compared multiple instances of connected vehicle data to an advanced walking profiler. Results demonstrate the feasibility of harvesting road surface data from the existing connected vehicles to support continuous road surface monitoring applications. Benefits include more timely acquisition of pavement data, broader coverage of the road network, and potential for aiding existing survey fleet in targeting early signs of pavement degradation. Collected roughness measurements were found to be closely aligned with reference devices that were employed as part of this study. A regional experiment in the Detroit Metropolitan area that covered 64 mi of roadways found that the connected vehicle data was highly correlated with Class 1 profiler data where 83% of traveled miles had a 0.8 or higher correlation. Moreover, 85% of the measurements had small absolute errors less than 50 in./mi and half of the measurements had absolute errors less than 20 in./mi. A test track experiment at Virginia Tech Transportation Institute Smart Road facility compared the connected vehicle data to the advanced walking profiler and showed that the correlations for repeatability and reproducibility are 0.90 and 0.91, respectively, which are very close to the standard requirement for certified profilers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.