Abstract

Stimulation of the serotonin 1A (5-HT1A) receptor subtype by 5-HT has been shown to result in an elevation in plasma corticosteroid levels in both mammals and several species of teleost fish, including the Gulf toadfish (Opsanus beta); however, in the case of teleost fish, it is not clearly known at which level of the hypothalamic-pituitary-interrenal axis the 5-HT1A receptor is stimulated. Additionally, previous investigations have revealed that chronic elevations of plasma cortisol mediate changes in brain 5-HT1Areceptor mRNA and protein levels via the glucocorticoid receptor (GR); thus, we hypothesized that the function of centrally activated 5-HT1A receptors is reduced or abolished as a result of chronically elevated plasma cortisol levels and that this response is GR mediated. Our results are the first to demonstrate that intravenous injection of the 5-HT1A receptor agonist, 8-OH-DPAT, stimulates a significant increase in corticotropin-releasing factor (CRF) precursor mRNA expression in the hypothalamic region and the release of adrenocorticotropic hormone (ACTH) from the pituitary of teleost fish compared to saline-injected controls. We also provide evidence that cortisol, acting via GRs, attenuates the 5-HT1A receptor-mediated secretion of both CRF and ACTH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call