Abstract

When many worms co-infect the same host, their average size is often reduced. This negative density-dependent growth is called the crowding effect. Crowding has been reported many times for worms in their intermediate hosts, but rarely have the fitness consequences of crowding been examined. This study tested whether larval crowding reduces establishment success in the next host for two parasites with complex life cycles, the nematode Camallanus lacustris and the cestode Schistocephalus solidus. Infected copepods, the first host, were fed to sticklebacks, the second host. Fish received a constant dose, but the infection intensity in copepods was varied (e.g. giving two singly infected copepods or one doubly infected copepod). Worms from higher-intensity infections did not have significantly reduced infection success in fish. However, crowded treatments had a disproportionate number of low and high infection rates, and although this trend was not significant, it hints at the possibility that multiple worms within a copepod are more likely to either all infect or all die when transmitted to the next host. These results indicate that a smaller larval size due to crowding need not reduce the establishment probability of a worm in the next host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.