Abstract
This paper deals with the unstirred chemostat model with crowding effects. The introduction of crowding effects makes the conservation law invalid, and the equations cannot be combined to eliminate one of the variables. Consequently, the usual reduction of the system to a competitive system of one order lower is lost. Thus the system with predation and competition is non-monotone, and the single population model cannot be reduced to a scalar system. First, the uniqueness and asymptotic behaviors of the semi-trivial solutions are established. Second, the existence and structure of coexistence solutions are given by the degree theory and bifurcation theory. It turns out that the positive bifurcation branch connects one semi-trivial solution branch with another. Finally, the stability and asymptotic behaviors of coexistence solutions are discussed in some cases. It is shown that crowding effects are sufficiently effective in the occurrence of coexisting, and overcrowding of a species has an inhibiting effect on itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.