Abstract

Most existing weakly supervised crowd counting methods utilize Convolutional Neural Networks (CNN) or Transformer to estimate the total number of individuals in an image. However, both CNN-based (grid-to-count paradigm) and Transformer-based (sequence-to-count paradigm) methods take images as inputs in a regular form. This approach treats all pixels equally but cannot address the uneven distribution problem within human crowds. This challenge would lead to a decline in the counting performance of the model. Compared with grid and sequence, the graph structure could better explore the relationship among features. In this article, we propose a new graph-based crowd counting method named CrowdGraph, which reinterprets the weakly supervised crowd counting problem from a graph-to-count perspective. In the proposed CrowdGraph, each image is constructed as a graph, and a graph-based network is designed to extract features at the graph level. CrowdGraph comprises three main components: a dynamic graph convolutional backbone, a multi-scale dilated graph convolution module, and a regression head. To the best of our knowledge, CrowdGraph is the first method that is completely formulated based on the Graph Neural Network (GNN) for the crowd counting task. Extensive experiments demonstrate that the proposed CrowdGraph outperforms pure CNN-based and pure Transformer-based weakly supervised methods comprehensively and achieves highly competitive counting performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call