Abstract

The membrane-less organelles (MLOs) with subcompartments are formed via liquid-liquid phase separation (LLPS) in the crowded cell interior whose background molecules are up to 400 mg/mL. It is still a puzzle how the background molecules regulate the formation, dynamics, and functions of MLOs. Using biphasic coacervate droplets formed by poly(l-lysine) (PLL), quaternized dextran (Q-dextran), and single-stranded oligonucleotides (ss-oligo) as a model of MLO, we online monitored the LLPS process in Bovine Serine Albumin (BSA) solution up to 200.0 mg/mL. Negatively charged BSA is able to form complex or coacervate with positively charged PLL and Q-dextran and thus participates in the LLPS via nonspecific interactions. Results show that BSA effectively regulates the LLPS by controlling the phase distribution, morphologies, and kinetics. With increasing BSA concentration, the spherical biphasic droplets evolve in sequence into phase-inverted flower-like structure, worm-like chains, network structures, and confined coacervates. Each kind of morphology is formed via its own specific growth and fusion pathway. Our work suggests that MLOs could be controlled solely by the crowded environment and provides a further step toward understanding the life process in cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call