Abstract

This paper presents an approach for evasive maneuver against dynamic obstacles in multi-agent navigation in a crowd evacuation scenario. Our proposed approach is based on reciprocal velocity obstacles (RVO) with a different manner to treat the obstacles. We treat all possible hindrances in velocity space reciprocally thus all collision cones generated by other agents and obstacles are treated in the same RVO manner with the key difference in the effort of avoidance. Our approach assumes that dynamic obstacles bear no awareness of navigation space unlike agents thus the avoidance effort lies on behalf of the mobile agents, creating unmutual effort in an evasive maneuver. We display our approach in an evacuation scenario where a crowd of agents must navigate through an evacuation area trespassing zone filled with dynamic obstacles. These dynamic obstacles consist of random motion built based on Brownian motion thus posses an immense challenge for the mobile agent in order to overcome this hindrance and safely navigate to their evacuation area. Our experimentation shows that 51.1% fewer collisions occurred which is denote safer navigation for agents in approaching their evacuation point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.