Abstract

In metropolitan environments, unmanned aerial vehicles (UAVs) equipped with video surveillance equipment can monitor crowd behavior and maintain public safety. In high-traffic areas where humans are more likely to make mistakes, a smart city needs modern technology to forecast the behavior of its residents. In order to improve citywide traffic flow, urban transportation systems (UTSs) monitor and learn how people behave in crowds. Using UAVs for video surveillance in smart cities, our research describes a unique way to assess crowd condition, which expands the scope of human-vehicle interactions. Moreover, we use fuzzy logic ranking to improve the system’s ability to detect anomalies in crowds. In order to improve decision-making, a novel deep transfer learning (DTL) technique is applied to the UAV’s received frames. A 98.5% accuracy rate, satisfactory performance, and robustness to population behavior are all characteristics of the proposed integrated model. In UTSs and urban areas, our novel intelligent system analyzes human behavior based on vehicle-human interactions. In areas with low and high traffic congestion, the modified ResNet (mResNet) architecture predicts the crowd’s condition based on fuzzy logic (FLA). Through decision-making based on accurate crowd conditions, best general paths can be selected using the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.