Abstract

This review aims to present recent developments in modeling and control of multiagent systems. A particular focus is set on crowd dynamics characterized by complex interactions among agents, also called social interactions, and large-scale systems. Specifically, in a crowd each individual agent interacts with a field generated by the other agents and the environment. These systems can be modeled at the microscopic scale by ordinary differential equations, while an alternative description at the mesoscopic scale is given by a partial differential equation for the propagation of the probability density of the agents. Control actions can be applied at the individual level as well as at the level of the corresponding fields. This article presents and compares different control types, and the specific application to multilane, multiclass traffic is developed in some detail, showing the main tools at work in a hybrid setting with relevant impacts on autonomous driving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.