Abstract
In this paper we model pedestrian flows evacuating a narrow corridor through an exit by a one-dimensional hyperbolic conservation law with a point constraint in the spirit of [Colombo and Goatin, J. Differential Equations, 2007]. We introduce a nonlocal constraint to restrict the flux at the exit to a maximum value p(ξ), where ξ is the weighted averaged instantaneous density of the crowd in an upstream vicinity of the exit. Choosing a non-increasing constraint function p(⋅), we are able to model the capacity drop phenomenon at the exit. Existence and stability results for the Cauchy problem with Lipschitz constraint function p(⋅) are achieved by a procedure that combines the wave-front tracking algorithm with the operator splitting method. In view of the construction of explicit examples (one is provided), we discuss the Riemann problem with discretized piecewise constant constraint p(⋅). We illustrate the fact that nonlocality induces loss of self-similarity for the Riemann solver; moreover, discretization of p(⋅) may induce non-uniqueness and instability of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.