Abstract
Estimating the crowd density of public territories, such as scenic spots, is of great importance for ensuring population safety and social stability. Due to problems in scenic spots such as illumination change, camera angle change, and pedestrian occlusion, current methods are unable to make accurate estimations. To deal with these problems, an ensemble learning (EL) method using support vector regression (SVR) is proposed in this study for crowd density estimation (CDE). The method first uses human head width as a reference to separate the foreground into multiple levels of blocks. Then it adopts the first-level SVR model to roughly predict the three features extracted from image blocks, including D-SIFT, ULBP, and GIST, and the prediction results are used as new features for the second-level SVR model for fine prediction. The prediction results of all image blocks are added for density estimation according to the crowd levels predefined for different scenes of scenic spots. Experimental results demonstrate that the proposed method can achieve a classification rate over 85% for multiple scenes of scenic spots, and it is an effective CDE method with strong adaptability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.