Abstract

Due to the increased renewable power penetration level renewable power plants have to provide low-voltage ride-through (LVRT) capability with simultaneous dynamic voltage support, to ensure the grid stability during grid faults. Concerning doubly fed induction generator (DFIG) based wind energy conversion systems (WECS) large electromotive forces and rotor currents, which may damage the rotor-side converter, or adversely affect the DFIG's controllability are induced into the rotor circuit in case of voltage dips. To handle and limit the rotor currents in case of asymmetrical voltage dips without crowbar triggering, a virtual resistance control approach based on the standard dq-control in the synchronous reference frame is discussed. The theoretical results are compared with those of more demanding virtual inductance control. The LVRT capability is verified with measurement results, recorded during a certification campaign at a 2.1 MW WECS concerning the Indian grid code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.