Abstract

Hemorrhagic transformation after ischemic stroke is an independent predictor for poor outcome and is characterized by blood vessel rupture leading to brain edema. To date, no therapies for preventing hemorrhagic transformation exist. Disintegrins from the venom of Crotalus atrox have targets within the coagulation cascade, including receptors on platelets. We hypothesized that disintegrins from C. atrox venom can attenuate hemorrhagic transformation by preventing activation of matrix metalloproteinase after middle cerebral artery occlusion (MCAO) in hyperglycemic rats. We subjected 48 male Sprague-Dawley rats weighing 240-260g to MCAO and hyperglycemia to induce hemorrhagic transformation of the infarction. At reperfusion, we administered either saline (vehicle), whole C. atrox venom (two doses were used), or fractionated C. atrox venom (HPLC Fraction 2). Rats were euthanized 24hr post-ictus for measurement of infarction and hemoglobin volume. Reversed-phase HPLC was performed to fractionate the whole venom and peaks were combined to form Fraction 2, which contained the disintegrin Crotatroxin. Fraction 2 protected against hemorrhagic transformation after MCAO, and attenuated activation of matrix metalloproteinase-9. Administering matrix metalloproteinase antagonists prevented the protection by Fraction 2. The results of this study indicate that disintegrins found in C. atrox venom may have therapeutic potential for reducing hemorrhagic transformation after ischemic stroke. Moreover, the RP-HPLC fractions retained sufficient protein activity to suggest that gentler and less efficient orthogonal chromatographic methods may be unnecessary to isolate proteins and explore their function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.