Abstract

Crotalase, a fibrinogen-clotting enzyme isolated from the venom of Crotalus adamanteus, and its overlapping fragments were subjected to Edman degradation. The resulting amino acid sequence [see text] characteristic of a serine proteinase. Comparison with thrombin, the physiological fibrinogen-clotting enzyme, showed that thrombin's fibrinogen-recognition exosite (FRE) is poorly represented in crotalase. Hirudin, a FRE-dependent inhibitor, had no effect on crotalase. Spatial modeling of crotalase yielded a possible alternative fibrinogen-recognition site comprised of Arg 60F, Lys 85, Lys 87, and Arg 107 (underlined in the sequence above). Crotalase also lacks thrombin's YPPW loop, as well as its functionally important ETW 146-148, and its heparin-binding site. The enzyme contains a single asparagine-linked glycosylation site, NFT, bearing neutral and amino sugars that account for 8.3% of the enzyme's total molecular weight of 29,027. The calculated absorbance of crotalase at 280 nm, 1%, cm(-1) is 15.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.