Abstract

Manufacturing of modern coating materials doped with magnetic nanoparticles has arisen as an exciting new area of materials processing fluid dynamics. Methanol is primarily used in chemical manufacturing, specialized vehicles fuel, energy carrier, as an antifreeze in pipelines, in wastewater treatment plant, and many more. In this article, a mathematical model is therefore developed to study crosswise flow of methanol-based ferromagnetic fluid through a permeable medium with suction/injection effects. Temperature-dependent viscosity is taken with Reynolds exponential model. The Tiwari–Das and Maxwell–Garnett nanofluid models are used, which alters the electrical conductivity, density, and thermal conductivity properties with nanoparticle volume fraction. The two-dimensional mass, momentum, and energy equations are normalized into nonlinear system comprising ordinary differential equations via appropriate similarity transformations. The solution of the emerging physical problem is attained by shooting scheme in MATLAB symbolic software. Validation of the results is presented through comparison with previously reported literature in the limiting sense. The influence of pertinent parameters on the flow and heat transfer characteristics is revealed through graphs. It is found that velocity profiles are suppressed with greater magnetic parameter and porosity parameters but temperature profile is enhanced. Velocity and temperature profiles for injection case are higher when compared with the suction phenomenon. Shear stress at the wall is decreased with volume fraction. Heat transfer gradient at the wall is significantly enhanced with volume fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call