Abstract

The aerodynamics of the low aspect ratio (LAR) wings is of outmost importance in the performance of the fixed-wing micro air vehicles (MAVs). The flow around these wings is widely influenced by three dimensional (3D) phenomena: including wing-tip vortices, formation of laminar bubble, flow separation and reattachment, laminar to turbulent transition or any combination of these phenomena. All the recent studies consider the aerodynamic characteristics of the LAR wings under the effect of the direct wind. Here we focus on the numerical study of the influence of cross-wind on flow over the inverse Zimmerman wings with the aspect ratios (AR) between 1 and 2 at Reynolds numbers between 6×104 and 105. We have considered cross-wind’s angles from 0° to 40° and angle of attack from 0° to 12°. The results show that lift and drag coefficient generally decrease when the angle of the cross-wind is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call