Abstract

Pedestrian network creation and completion for various tasks in transportation planning engineering generally requires laborious manual labeling of sidewalks and crosswalks. In this study, we employed the deep learning-based object detection model YOLO v5 for detecting crosswalks using Google Maps satellite imagery data of four North American cities. We also tested for two additional scenarios involving two image-processing techniques to exploit the special properties of crosswalks. Observations showed that the original images performed better than with binary thresholding and nearly the same even when noisy regions outside the right-of-way were removed. We proposed an algorithm to assign the detected crosswalks to intersection legs. We demonstrated the effectiveness of this technique for Washington, D.C. and Los Angeles, CA, showing classification accuracy rates of 71% and 89%, respectively. We also showed the influence of increasing distance threshold, a tolerance radius of prediction accuracy, in degrading the classification performance. This method, when combined with existing methods for sidewalk detection from aerial and street view images, could be reasonably used to help complete urban pedestrian networks in cities where high-resolution satellite images are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.