Abstract
Efficient and accurate early prediction of Alzheimer’s disease (AD) based on the neuroimaging data has attracted interest from many researchers to prevent its progression. Deep learning networks have demonstrated an optimal ability to analyse large-scale multimodal neuroimaging for AD classification. The most widely used architecture of deep learning is the Convolution neural networks (CNN) that have shown great potential in AD detection. However CNN does not capture long range dependencies within the input image and does not ensure a good global feature extraction. Furthermore, increasing the receptive field of CNN by increasing the kernels sizes can cause a feature granularity loss. Another limitation is that CNN lacks a weighing mechanism of image features; the network doesn’t focus on the relevant features within the image. Recently,vision transformer have shown an outstanding performance over the CNN and overcomes its main limitations. The vision transformer relies on the self-attention layers. The main drawbacks of this new technique is that it requires a huge amount of training data. In this paper, we combined the main strengths of these two architectures for AD classification. We proposed a new method based on the combination of the Cross ViT and Wide Residual Squeeze-and-Excitation Network. We acquired MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS). We also proposed a new data augmentation based on the self attention progressive generative adversarial neural network to overcome the limitation of the data. Our proposed method achieved 99% classification accuracy and outperforms CNN models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Hybrid Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.