Abstract

An investigation has been carried out to examine the crosstalk contamination in the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft. Prior to this study, the cause of the pronounced striping in Earth View (EV) images and obvious discontinuity in the EV brightness temperature (BT) of the thermal emissive bands (TEB) during black body (BB) warm-up cool-down (WUCD) calibration observed since launch has not been identified. Meanwhile, it has been recently demonstrated in the MODerate-resolution Imaging Spectroradiometer (MODIS) long-wave infrared (LWIR) photovoltaic (PV) bands that the crosstalk effect induces the same erroneous features. In this investigation, it is shown that the established lunar imagery analysis indeed verifies the existence of crosstalk contamination in SNPP VIIRS TEB. The crosstalk effect is quantitatively characterized by deriving the crosstalk coefficients from the scheduled lunar observations. The magnitude of the effect is comparatively smaller than that in MODIS LWIR PV bands, but is of a large enough magnitude to induce the aforementioned artificial features. Among all SNPP VIIRS TEB, Band M14 has the largest crosstalk contamination from Band M15, while Bands M13, M15, M16, and I5 have pronounced crosstalk effects as well. One new detail of the crosstalk effect specific to SNPP VIIRS, differing from the MODIS result, is the distinctive two-group pattern of odd and even detectors for each affected band due to the arrangement of the detector on the focal plane assembly (FPA). This is fully consistent with the earlier finding that this odd-even detector arrangement contributes to striping in the sea surface temperature (SST) products. Our analyses additionally suggest an explanation of the large temperature anomalies appearing during the WUCD time periods. The parallel effort examining the potential crosstalk contamination in SNPP VIIRS reflective solar bands, however, reveals no observable effect.

Highlights

  • The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbitingPartnership (SNPP) satellite was launched on 28 October 2011 [1,2]

  • The existence of significant crosstalk contamination in thermal emissive bands (TEB) has been confirmed by the established lunar imagery analysis, while no observable crosstalk effect is found in reflective solar bands (RSB)

  • The crosstalk effect in TEB is characterized and the crosstalk coefficients for Bands M13–M16 are derived from the analysis of the scheduled lunar observations

Read more

Summary

Introduction

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting. They are calibrated on-orbit either with an on-board solar diffuser (SD) and SD stability monitor (SDSM) system. The Moon, which is scheduled to be viewed approximately monthly through the instrument’s space view (SV) port [14,15,16], and the Earth targets are used to monitor the radiometric performance. VIIRS views the SV, Earth view (EV), BB, and SD, respectively, via a rotating telescope assembly (RTA) and half-angle mirror (HAM). VIS/NIR FPA and SD, respectively, via a rotating telescope assembly (RTA) and half-angle mirror (HAM).

Suomi National
Crosstalk Effect
Lunar observed by SNPP thermal emissive bands
Crosstalk Coefficients
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call