Abstract

The potential usefulness of silver nanoparticles (AgNPs) in anticancer therapy has been postulated for many years. However, little is known to date about the exact impact of such NPs on intracellular detoxication pathways. Therefore, the aim of this study was to determine the impact of AgNPs on the AhR-PPARγ-CYP1A1 pathway in neuroblastoma (SH-SY5Y) cells. The obtained results showed a decrease in the metabolic activity of the SH-SY5Y cells at the 50 and 100 μg/mL concentrations with an increase in caspase-3 activity. An increase in the intercellular ROS production was observed at the 1 and 10 μg/mL concentrations. The co-treatment of the AgNP-treated cells with the AhR and PPARγ inhibitors abolished the effect of the tested AgNPs in the SH-SY5Y cells. In turn, the CYP1A1 activity assay showed a decrease in this parameter in the AgNP-treated cells. Moreover, the gene expression analysis demonstrated that AgNPs were able to increase the AhR and CYP1A1 mRNA expression and decrease the PPARγ gene expression after the 6-h treatment. In turn, an increase in the AhR and PPARγ protein expression was observed after 24 h. Summarizing, the study shows for the first time that AgNPs with a 5-nm diameter size are able to exert a cytotoxic effect on SH-SH5Y cells in a ROS-dependent manner affect the AhR-PPARγ-CYP1A1 pathway inter alia by inhibiting the activity of CYP1A1. This is important due to given present research approaches using such NPs as enhancer agents in the modern PPARγ inhibitor-based anticancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call