Abstract
Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which—in contrast to GPXs—contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.