Abstract

Stromal cell-derived factor 1 (SDF-1) is a chemokine that can be expressed in injured cardiomyocytes after myocardial infarction (MI). By combining with its receptor CXCR4, SDF-1 induced stem and progenitor cells migration. CXCR7, a novel receptor for SDF-1, has been identified recently. We aimed to explore the roles of SDF-1/CXCR4 and SDF-1/CXCR7 pathway and their crosstalk in CSCs migration. In the present study, CXCR4 and CXCR7 expression were identified in CSCs. Transwell assay showed that SDF-1 caused CSCs migration in a dose- and time-dependent manner, which could be significantly suppressed by CXCR4 or CXCR7 siRNA. Phospho-ERK, phospho-Akt and Raf-1 significantly elevated in CSCs with SDF-1 stimulation. Knockdown of CXCR4 or CXCR7 significantly decreased phospho-ERK or phospho-Akt, respectively, and eventually resulted in the inhibition of CSCs migration. Moreover, western blot showed that MK2206 (Akt inhibitor) increased the expression of phospho-ERK and Raf-1, whereas PD98059 (ERK inhibitor) had no effect on phospho-Akt and Raf-1. GW5074 (Raf-1 inhibitor) upregulated the expression of phospho-ERK, but had no effect on phospho-Akt. The present study indicated that SDF-1/CXCR7/Akt and SDF-1/CXCR4/ERK pathway played important roles in CSCs migration. Akt phosphorylation inhibited Raf-1 activity, which in turn dephosphorylated ERK and negatively regulated CSCs migration.

Highlights

  • In 2005, SDF-1 was revealed to bind a second chemokine receptor CXCR7 with an even 10-fold higher affinity compared with CXCR414

  • The expressions of CXCR4 and CXCR7 in cardiac stem cells (CSCs) were determined by reverse transcription (RT)-PCR and western blot in which 4T1 cells were treated as a positive control (Fig. 1B,C)

  • All these results indicated that CXCR4 and CXCR7 could be detected in CSCs

Read more

Summary

Introduction

In 2005, SDF-1 was revealed to bind a second chemokine receptor CXCR7 with an even 10-fold higher affinity compared with CXCR414. Recent reports indicated that CXCR7 can activate Akt, MAPK, and JAK/STAT3 cascades, either by direct modulation, through a β -arrest independent pathway[26,27,28,29], or after heterodimerization with CXCR418,20,28,30. Based on these findings, the aim of the present study was to elucidate the role of SDF-1/CXCR4 and SDF-1/CXCR7 pathway in regulating CSCs migration and explore the crosstalk of the signal cascades involving in it

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.