Abstract

Despite only comprising half of all known viral species, RNA viruses are disproportionately responsible for many of the worst epidemics in human history, including outbreaks of influenza, poliomyelitis, Ebola, and most recently, the coronavirus disease-2019 (COVID-19) pandemic. The propensity for RNA viruses to replicate in cytosolic compartments has led to an evolutionary arms race and the emergence of cytosolic sensors to recognise and initiate the host innate immune response. Although significant progress has been made in identifying and characterising cytosolic RNA sensors as anti-viral innate immune factors, the potential role for cytosolic DNA sensors in RNA viral infection is only recently being appreciated. Among these, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has attracted increasing attention. The cGAS-STING signalling pathway has emerged as a key innate immune signalling axis that is implicated in diverse human diseases from infectious diseases to neurodegeneration and cancer. Here we review the existing literature on RNA viruses and their reciprocal interactions with the cGAS-STING pathway and share insights into RNA virus diversity by touching on the similarities and differences of RNA viral strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call