Abstract

Although receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signaling has been shown to prolong the survival of mature dendritic cells (DCs), the association of RANKL pathway with Fas-mediated apoptosis is obscure. Here, we found that bone marrow-derived DCs (BMDCs) from the Fas-deficient strain MRL/lpr mice, could survive much longer than normal DCs. The expressions of Bcl-x and Bcl-2 and the nuclear transport of NF-kappaB of RANKL-stimulated BMDCs from MRL/lpr mice were significantly up-regulated. By contrast, Fas expression of BMDCs from normal C57BL/6 and MRL(+/+) mice was increased by RANKL stimulation, and an enhanced DC apoptosis was found when stimulated with both RANKL and anti-Fas mAb, which was associated with activation of caspase-3 and caspase-9. Furthermore, the expression of FLIP(L), an inhibitory molecule against Fas-mediated apoptosis, in normal DCs was significantly decreased by RANKL and anti-Fas mAb. Indeed, the adoptive transfer of RANKL-stimulated DCs resulted in rapid acceleration of autoimmunity in MRL/lpr recipients. These findings indicate that the crosstalk between RANKL and Fas signaling in DCs might control immune tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.