Abstract

BackgroundCigarette smoke extract (CSE) affects the expression of non-neuronal components of cholinergic system in bronchial epithelial cells and, as PEBP1/Raf-mediated MAPK1/2 and ERK1/2 pathway, promotes inflammation and oxidative stress. AimsWe studied whether Acetylcholine (ACh) is involved in the mechanism of crosstalk between mAChRM3 and β2Adrenergic receptors (β2AR) promoting, via PI3/PKC/PBEP1/Raf/MEK1/2/ERK1/2 activation, β2AR desensitization, inflammation and, oxidative stress in a bronchial epithelial cell line (16HBE) after long-term exposure to cigarette smoke extract (LECSE). MethodsWe evaluated mAChRM3 and Choline Acetyltransferase (ChAT) expression, ACh production, PEBP1, ERk1/2, and β2AR phosphorylation, as well as NOX-4, ROS production and IL-8 release in 16HBE after LECSE. The inhibitory activity of Hemicholinium (HCh-3) (a potent choline uptake blocker), LY294002 (a highly selective inhibitor of PI3 kinase), Tiotropium (Spiriva®) (anticholinergic drug) and Olodaterol (β2AR agonist), were tested in 16HBE after LECSE. ResultsmAChRM3, ChAT, ACh activity, pPEBP1, pβ2AR, pERK1/2, ROS, NOX-4 and IL-8 increased after LECSE in 16HBE LECSE compared to untreated cells. HCh-3 and LY294002 (alone or in combination) as well as Tiotropium (Spiriva®) or Olodaterol (alone or in combination) all reduced the levels of pPEBP1, pβ2AR, pERK1/2, ROS, NOX-4, and IL-8 in 16HBE LECSE compared to untreated cells. ConclusionsLECSE promotes ACh production which enhances PI3/PKC/PEBP1/Raf-ERK1/2 pathway activation, heterologous β2AR desensitization, as well as release of inflammatory and oxidative mediators in bronchial epithelial cells. The use of anticholinergic drugs and long-acting β2-agonists, alone or in combination may be dampen these inflammatory mechanisms when used in combination in some epithelial cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.