Abstract

The spread of Avian influenza virus via animal feces makes the virus difficult to prevent, which causes great threat to human health. Therefore, it is imperative to understand the survival and invasion mechanism of H9N2 virus in the intestinal mucosa. In this study, we used mouse threedimensional intestinal organoids that contained intestinal crypts and villi differentiated from intestinal stem cells to explore interactions between H9N2 avian influenza virus and the intestinal mucosa. The HA, NA, NP and PB1 genes of H9N2 viruses could be detected in intestinal organoids at 1 h, and reached peak levels at 48 h post-infection. Moreover, the HA and NP proteins of H9N2 virus could also be detected in organoids via immunofluorescence. Virus invasion caused damage to intestinal organoids with reduced mRNA transcript expression of Wnt3, Dll1 and Dll4. The abnormal growth of intestinal organoids may be attributed to the loss of Paneth cells, as indicated by the low mRNA transcript levels of lyz1 and defcr1. This present study demonstrates that H9N2 virus could invade intestinal organoids and then cause damage, as well as affect intestinal stem cell proliferation and differentiation, promoting the loss of Paneth cells.

Highlights

  • In China, low pathogenicity avian influenza (LPAI) viruses of the H9N2 subtype have become endemic

  • Assessment of the growth of mouse intestinal organoids Intestinal crypts were isolated from the mouse jejunum and cultured in ENR medium to form intestinal organoids, which contains all kinds of epithelial cells, such as absorptive cells, Paneth cells, goblet cells and so on

  • Intestinal organoids that consist of intestinal stem cells can develop to study intestinal viruses and crypts and represents a promising model for intestinal research [8, 22]

Read more

Summary

Introduction

In China, low pathogenicity avian influenza (LPAI) viruses of the H9N2 subtype have become endemic. H9N2 virus has been detected in multiple avian species, including chicken, duck, quail, pheasant, partridge, pigeon, silky chicken, chukar, and egret, which has resulted in significant economic losses [1, 2]. H9N2 viruses have undergone extensive reassortment with many subtypes of AI viruses, including HPAI, H5N1, and H7N3 viruses; the H9N2 virus poses a significant zoonotic threat [3]. Avian influenza virus (AIV) mainly infects through the respiratory tract, resulting in severe respiratory syndrome or even death. The H9N2 virus can replicate in avian guts and spread by fecal–oral transmission [5]. Previous studies have established that AIV can invade intestinal cells, such as HT-29 and

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.