Abstract

Carbon nanotubes (CNTs) are emerging environmental and occupational toxicants known to induce lung immunotoxicity. While the underlying mechanisms are evolving, it is yet unknown whether inhaled CNTs would cause abnormalities in gut microbiota (dysbiosis), and if such microbiota alteration plays a role in the modulation of CNT-induced lung immunotoxicity. It is also unknown whether co-exposure to tobacco smoke will modulate CNT effects. We compared the effects of lung exposure to multi-wall CNT, cigarette smoke extract (CSE), and their combination (CNT + CSE) in a 4-week chronic toxicity mouse model. The exposures induced differential perturbations in gut microbiome as evidenced by altered microbial α- and β- diversity, indicating a lung-to-gut communication. The gut dysbiosis due to CNTs, unlike CSE, was characterized by an increase in Firmicutes/Bacteroidetes ratio typically associated with proinflammatory condition. Notably, while all three exposures reduced Proteobacteria, the CNT exposure and co-exposure induced appearance of Tenericutes and Cyanobacteria, respectively, implicating them as potential biomarkers of exposure. CNTs differentially induced certain lung proinflammatory mediators (TNF-α, IL-1β, CCL2, CXCL5) whereas CNTs and CSE commonly induced other mediators (CXCL1 and TGF-β). The co-exposure showed either a component-dominant effect or a summative effect for both dysbiosis and lung inflammation. Depletion of gut microbiota attenuated both the differentially-induced and commonly-induced (TGF-β) lung inflammatory mediators as well as granulomas indicating gut-to-lung communication and a modulatory role of gut dysbiosis. Taken together, the results demonstrated gut dysbiosis as a systemic effect of inhaled CNTs and provided the first evidence of a bidirectional gut-lung crosstalk modulating CNT lung immunotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.