Abstract

Previous histopathological studies have shown the hepatotoxicity of paclitaxel (TXL). However, there is little known about the molecular pathway(s) of TXL-induced hepatotoxicity. Therefore, this study aimed to uncover the role of two transcription factors in the TXL-induced hepatotoxicity. Moreover, the hepato-protective effect of royal jelly (RJ) on TXL-induced toxicity was investigated. Wistar rats were divided into control and test groups. The test groups along with TXL received various doses of RJ (0, 50, 100 and 150 mg/kg, body weight). Biochemical hepatic functional assays, histopathological studies and hepatic superoxide dismutase level were determined. Additionally, the expression of E2f1 and cellular-myelocytomatosis (c-Myc) at messenger RNA (mRNA) level in the liver was evaluated. The hepatic functional biomarkers showed a significant ( p < 0.05) elevation in the TXL-received animals, while RJ administration for 28 days resulted in a remarkable reduction in TXL-elevated alkaline phosphatase, alanine transaminase and lactate dehydrogenase levels. The TXL-treated animals showed a significant ( p < 0.05) up-regulation of E2f1 and down-regulation of c-Myc at mRNA level, respectively. RJ lowered the expression of E2f1 while enhanced the expression of c-Myc in a dose-dependent manner. Our data suggest the hepato-protective effects of RJ on TXL-induced toxicity, which may attribute to a clear crosstalk between E2f1 and c-Myc as two regulators of liver growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.