Abstract

DNA double strand breaks (DSBs) are the most threatening type of DNA lesions and must be repaired properly in order to inhibit severe diseases and cell death. There are four major repair pathways for DSBs: non-homologous end joining (NHEJ), homologous recombination (HR), single strand annealing (SSA) and alternative end joining (alt-EJ). Cells choose repair pathway depending on the cell cycle phase and the length of 3′ end of the DNA when DSBs are generated. Blunt and short regions of the 5′ or 3′ overhang DNA are repaired by NHEJ, which uses direct ligation or limited resection processing of the broken DNA end. In contrast, HR, SSA and alt-EJ use the resected DNA generated by the MRN (MRE11-RAD50-NBS1) complex and C-terminal binding protein interacting protein (CtIP) activated during the S and G2 phases. Here, we review recent findings on each repair pathway and the choice of repair mechanism and highlight the role of mismatch repair (MMR) protein in HR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.