Abstract

Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.