Abstract

In type-2 diabetes (T2D) and Parkinson's disease (PD), polypeptide assembly into amyloid fibers plays central roles: in PD, α-synuclein (aS) forms amyloids and in T2D, amylin [islet amyloid polypeptide (IAPP)] forms amyloids. Using a combination of biophysical methods in vitro we have investigated whether aS, IAPP, and unprocessed IAPP, pro-IAPP, polypeptides can cross-react. Whereas IAPP forms amyloids within minutes, aS takes many hours to assemble into amyloids and pro-IAPP aggregates even slower under the same conditions. We discovered that preformed amyloids of pro-IAPP inhibit, whereas IAPP amyloids promote, aS amyloid formation. Amyloids of aS promote pro-IAPP amyloid formation, whereas they inhibit IAPP amyloid formation. In contrast, mixing of IAPP and aS monomers results in coaggregation that is faster than either protein alone; moreover, pro-IAPP can incorporate aS monomers into its amyloid fibers. From this intricate network of cross-reactivity, it is clear that the presence of IAPP can accelerate aS amyloid formation. This observation may explain why T2D patients are susceptible to developing PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call