Abstract

Multi-task learning in Convolutional Networks has displayed remarkable success in the field of recognition. This success can be largely attributed to learning shared representations from multiple supervisory tasks. However, existing multi-task approaches rely on enumerating multiple network architectures specific to the tasks at hand, that do not generalize. In this paper, we propose a principled approach to learn shared representations in ConvNets using multitask learning. Specifically, we propose a new sharing unit: "cross-stitch" unit. These units combine the activations from multiple networks and can be trained end-to-end. A network with cross-stitch units can learn an optimal combination of shared and task-specific representations. Our proposed method generalizes across multiple tasks and shows dramatically improved performance over baseline methods for categories with few training examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call